Large stiff systems solved by Chebyshev methods
نویسندگان
چکیده
منابع مشابه
Solving large systems arising from fractional models by preconditioned methods
This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...
متن کاملS-ROCK: Chebyshev Methods for Stiff Stochastic Differential Equations
We present and analyze a new class of numerical methods for the solution of stiff stochastic differential equations (SDEs). These methods, called S-ROCK (for stochastic orthogonal Runge–Kutta Chebyshev), are explicit and of strong order 1 and possess large stability domains in the mean-square sense. For mean-square stable stiff SDEs, they are much more efficient than the standard explicit metho...
متن کاملSequential second derivative general linear methods for stiff systems
Second derivative general linear methods (SGLMs) as an extension of general linear methods (GLMs) have been introduced to improve the stability and accuracy properties of GLMs. The coefficients of SGLMs are given by six matrices, instead of four matrices for GLMs, which are obtained by solving nonlinear systems of order and usually Runge--Kutta stability conditions. In this p...
متن کاملThird Derivative Multistep Methods for Stiff Systems
Abstract: In this paper, we present a class of multistep methods for the numerical solution of stiff ordinary differential equations. In these methods the first, second and third derivatives of the solution are used to improve the accuracy and absolute stability regions of the methods. The constructed methods are A-stable up to order 6 and A(α)-stable up to order 8 so that, as it is shown in th...
متن کاملBalanced Implicit Methods for Stiff Stochastic Systems
This paper introduces some implicitness in stochastic terms of numerical methods for solving stiff stochastic differential equations and especially a class of fully implicit methods, the balanced methods. Their order of strong convergence is proved. Numerical experiments compare the stability properties of these schemes with explicit ones.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PAMM
سال: 2002
ISSN: 1617-7061,1617-7061
DOI: 10.1002/1617-7061(200203)1:1<508::aid-pamm508>3.0.co;2-3